Реклама





Рефераты по философии

Число как сущее

ПЛАН:

1) Число как сущее;

2) Арифметика пифагорейцев;

3) Единица и двоица;

4) Мера. Математическое и идеальное число;

5) Число и величина;

6) Используемая литература.

ЧИСЛО КАК СУЩЕЕ

Число понимается и принимается (многими) античными мыслителями как первая сущность, определяющая все многообразные внутрикосмические связи мира, основанного на мере и числе, соразмерного (симметричного) и гармоничного. Каким же мыслителям свойственен такой взгляд?

Среди греческих мыслителей прежде всего пифагорейцы, а вслед за ними и академики обращали особое внимание на роль числа в познании и конституировании мира: «Числу все вещи подобны», - утверждает Пифагор. Не следует, однако, понимать это утверждение так, как истолковывает его Аристотель, а именно, что все вещи состоят из числа, поскольку число допустимо лишь мыслить, но нельзя искать среди вещей. Как поясняет просвещенная Теано, «и многие эллины, как мне известно, думают, будто Пифагор говорил, что все рождается из числа. Но это учение вызывает недоумение: каким образом то, что даже не существует, мыслится порождающим? Между тем, он говорил, что все возникает не из числа, а согласно числу, так как в числе – первый порядок, по причастности которому и в счислимых вещах устанавливается нечто первое, второе и т. д.»

Таким образом, число выступает как принцип познания и порождения, ибо позволяет нечто различать, мыслить как определенное, вносить предел в мир и мысль. Поэтому число – первое из сущего, чистое бытие, - как таковое оно есть нечто божественное: «…Природа числа, - говорит Филолай, - познавательна, предводительна и учительна для всех во всем непонятном и неизвестном. В самом деле, никому не была бы ясна ни одна из вещей – ни в их отношении к самим себе, ни в их отношении к другому, если бы не было числа и его сущности». Число есть чистое идеальное бытие, первый образ безобразного Блага и первый прообраз всего существующего. Поэтому число – наиболее достоверное и истинное, первое во всей иерархии сущего, начало космоса.

Число играет первенствующую роль и в так называемом неписанном, или эзотерическом, учении Платона, незафиксированном в текстах самого Платона и дошедшем до нас лишь в реконструированном виде из отдельных свидетельств его учеников и последователей. Согласно этому учению, следы которого мы находим у Аристотеля, его ближайшего ученика Теофраста и позднеантичных неоплатоников, в основе всего лежит единица – начало тождественности, принцип формы и неопределенная двоица – принцип инаковости, или материи, которыми и порождается вся иерархия сущего – эйдосы и числа, души и геометрические объекты, физические тела. Принцип числа оказывается тем основанием, на котором покоится (более позднее) античное миросозерцание с его обостренным переживанием бытия, присутствующего в космосе, но не смешанного с ним.

АРИФМЕТИКА ПИФАГОРЕЙЦЕВ

В арифметике пифагорейцев основным (и, может быть, первоначальным) следует считать прежде всего деление чисел на четные, нечетные и четно-нечетное первичное число (единица). Этому тройному делению составляют параллель три вида чисел, открытых пифагорейцами: так называемые квадратные, прямоугольные и треугольные числа. Квадратные числа получаются через сложение нечетных: 1+3=4=22, 1+3+5=9=32; 1+3+5+7=16=42 и т.д. Прямоугольные числа получаются через сложение четных: 2+4=6=2 х 3; 2+4+6=12=3 х 4 и т.д. Треугольные числа получаются через сложение по порядку четных и нечетных чисел:

1+2+3+…+n=

в пифагорейской школе рано было открыто также взаимоотношение квадратов чисел (учение о сумме квадратов чисел). Далее у них мы находим учение о средних величинах, т.е. о пропорциях и отношениях величин. Насчитывалось всего десять видов «средних величин». Из них три вида: так называемое арифметическое, геометрическое и гармоническое среднее вошли в современную математику под названием непрерывных пропорций (арифметическая непрерывная пропорция а – с=с х b, геометрическая а : с=с : b, и гармоническая (а – b):(b - c)=a:c; таким образом, среднее арифметическое двух величин равно , среднее геометрическое аb и среднее гармоническое . из пифагорейской же школы вышла Пифагорова таблица умножения, вписанная в четырехугольник. Размышляя над основаниями математического счета привели пифагорейцев к поклонению священной декаде. Все остальные числа суть для них простые повторения первых десяти. Декаду они отождествляли с четверкой, так как сумма первых четырех чисел равна 10. священными числами считались по преимуществу единица, как первоначало чисел, троица, так как истинное единство представлялось им триединством, четверица, как заключающая в себе тайну декады, и , наконец, сама десятка.

К пифагорейским открытиям в геометрии принадлежит прежде всего так называемая Пифагорова теорема (в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов). Другая теорема, открытая Пифагором, говорит о сумме углов в треугольнике (=2d). Сам Пифагор открыл несоизмеримость диагонали квадрата с его стороной[1]. В стереометрии пифагорейцы первые открыли 5 правильных геометрических тел: куб, тетраэдр, октаэдр, икосаэдр и додекаэдр.

ЕДИНИЦА И ДВОИЦА

Каким же образом образуется само число? Главная роль здесь отводится единице. Единица – первое и наиболее точное отображение первоединого Блага. Единица и есть первое начало – сущего, познания, самого числа. Единица – 1) первая из сущего, само мыслимое бытие. Единица – 2) вне становления, представляет единое – начало сущего, не подверженное возникновению, и по существу есть начало объединяющее, сдерживающее и отъединяющее бытие от становления. Далее, единица 3) проста, бесчастна и неделима, не имеет никаких частей. По точному определению Евклида, 4) единица «есть то, через что каждое из существующих считается единым», т.е. само то обстоятельство, что вещи в мире текучего и преходящего все же отдельны, единичны, обусловлено предшествованием им по бытию единицы. Потому-то 5) единица – проявление первоединого – и есть первое начало всего, также и самого числа, и его мера. Итак, по словам латинского неоплатоника Макробия, единица – образ единого, источник и начало числа, монада, прообраз, - начало и конец всех вещей.

Наряду с одной-единственной единицей должно быть и начало множественности, отличное от единицы (ибо она одна), начало мультиплицирующее и размножающее. Подобное начало пифагорейцы, а вслед за ними платоники называют неопределенной двоицей.

И если единица – начало точности, определенности и неизменности, то двоица – неточности, неопределенности и изменчивости. Двоица представляет множественность, чистую инаковость, неупорядоченность и неоформленность. Поэтому-то двойка – 1)вторая, последующая после единицы, есть самый принцип следования; более того, она представляет оконченность иерархии целого как материя. Двоица, или диада, 2) ответственна за наличие в мире неравного и становящегося, поэтому она – неопределенное, т.е. «большое и малое», «более или менее». Двойка – 3) составная, имеет части, делима. Кроме того, благодаря ей 4) всякое существующее стремится покинуть свое наличное состояние, превратиться во что-то другое. Наконец, 5) диада не может служить мерой, хотя тоже является началом.

Двоица – это принцип рефлексии (именно поэтому без нее, без инаковости, нет ни бытия, ни познания), она как бы зеркало, зависящее от первого, от единицы, отражающее то, чем само не обладает, зависящее от первого, единицы и тем самым «расставляющее», размножающее ее, неумножимую саму на себя. Синтез же двух начал впервые проявляется в тройке.

Между тем единица – не число, а основание числа. Единица выступает как форма числа (позитивный принцип), а двоица – его материя (негативный принцип). Принцип множественности, обращенный на саму первую и единственную единицу, умножает ее в две и в бесконечное множество единиц, ибо там, где положено другое, второе, положено и все множество единиц. Из этих-то неделимых, но теперь уже многих единиц и состоит число – не механическая их сумма, но органическое, синтетическое единство.

12

Название: Число как сущее
Дата: 2007-05-31
Просмотрено 6085 раз