Реклама
Рефераты по философии
Философские проблемы математики
(страница 4)
Отметим еще одну особенность математики. Обычно предмет науки отличают от ее обхекта. В случае математики отличие объекта от предмета выглядит не так, как во всех иных науках, если иметь ввиду, что под предметом науки обычно понимают определенную сферу деятельности, совокупность, систему тех закономерностей, которые изучаются ею. Математика, строго говоря, не изучает законов развития природной или социальной среды, их изучают обычные науки. В самом деле, всеобщие законы окружающей нас действительности изучает философия, а частные – остальные (частные) науки. Математике же в этом отношении, что называется не повезло. Она не является частной наукой в обычном понимании этого слова; она есть особый способ теоретического описания действительности. В этом отношении она больше, чем обычная наука, ибо в принципе она может описывать любое явление окружающего нас мира и представляет собой целую совокупность дисциплин. (Философия – тоже нечто большее, чем наука, но в ином смысле: она является и наукой, и особой формой общественного сознания, содержащей в себе элементы идеологического характера).
Уяснение предмета математики позволяет понять в общих чертах как она соотносится не только с философией, о чем говорилось выше, но и с частными науками, изучающими отдельные фрагменты природного и социального окружения, равно как и идеальных по своей природе психических процессов.
Поскольку математика представляет по своей природе всеобщее и абстрактное знание, она в принципе может и должна использоваться во всех отраслях науки.
Специфика математического подхода к изучению действительности во многом объясняет и особенность критерия истины в математике.
С критерием истины в частных науках дело обстоит более или менее просто, особенно если не забывать об относительности практики как критерия истины. В математике же критерий истины выступает в весьма своеобразной форме; мы не можем доказать истинность математического предложения, основываясь лишь на практике, сколько бы мы не измеряли углы треугольника, нам не удастся доказать, что сумма внутренних углов треугольника равняется в точности 180 градусам.
И это объясняется не столько ошибками измерения, которое не может быть идеальным, абсолютно точным, сколько аподиктическим характером математических понятий, формально-дедуктивным выводом предложений, теорем математики. Короче говоря, практика является исходным пунктом математических понятий, но в качестве непосредственного критерия истины предложений математики она обычно не выступает. Только в конечном итоге практика определяет пригодность того или иного математического аппарата к описанию конкретных явлений действительности.
Своеобразие критерия истины в математике выражается и в том, что, как правило, в качестве такого критерия выступает в итоге теория арифметики натуральных чисел, истины которых являются незыблемыми для каждого математика. Впрочем, в какой-то мере это относится ко всем наукам, если иметь ввиду наличие в философии (как мировоззренческой и методологической основе науки) принципиальных положений, с которыми должны согласовываться все выдвигаемые гипотезы.
Необходимо заметить, что использование в качестве непосредственного критерия истины арифметики натуральных чисел означает, что этот критерий органически связан с двумя другими требованиями – точностью и непротиворечивостью. Удовлетворени этим двум критериям – тоже необходимое условие истинности математических построений.
Итак математика – своеобразный способ теоретического описания действительности, область знания, имеющая свой особый статус в системе наукю Предметом математического описания может стать любой процесс действительности, а объектями этой области знания являются пространственные формы и количественные отношения реальной действительности, в общем случае – абстрактные «математические» структуры.
4. Заключение
Математика – своеобразный способ теоретического описания действительности, область знания, имеющая свой особый статус в системе наук.
Математика является наукой, стоящей как бы отдельно от всех других наук и в этом смысле она похожа с философией. Всеобщность этих двух наук, их взаимопроникновение друг в друга и взаимоиспользование ведет к развитию общества и все остальных, так называемых специальных наук. Подобно тому как философия развивалась, обретала новые направления и идей, так и математика становилась все более развитой и всеобщей наукой.
5. Список литературы
1. Е.А.Беляев, В.Я.Перминов «Философские и методологические проблемы математики», МГУ, 1981, - 214 с.
2. Сборник научных трудов «Гносеологический анализ математической науки», Киев Наукова думка, 1985, -130 с.
3. Е.Д.Гражданников «Экстраполяционная прогностика», Новосибирск, 1988, -142 с.
4. Н.И.Жуков «Философские проблемы математики», Минск, 1977, -95 с.
5. А.Г.Спиркин «Основы философии», Москва, 1988, 592 с.
Название: Философские проблемы математики
Дата: 2007-05-31
Просмотрено 9331 раз