Реклама
Рефераты по философии
Системный подход как метод познания мира
(страница 4)
3.Прекращение роста и воспроизведения составляющих систему элементов, в результате система погибает.
Исходя из понимания зрелой системы как единства и постоянства структуры можно определить различные формы преобразования, непосредственно связанные с изменением каждого из перечисленных атрибутов системы [2]:
1. Преобразование приводящее к уничтожению всех взаимосвязей элементов системы (разрушение кристалла, распад атома и т.п.).
2. Преобразование системы в качественно иное, но равное по степени организации состояние. Это происходит вследствие:
а) изменения состава элементов системы ( замещение одного атома в кристалле на другой),
б) функционального изменения отдельных элементов и/или подсистем в системе (переход млекопитающих от сухопутного образа жизни к водному).
3. Преобразование системы в качественно иное, но низшее по степени организованности состояние. Оно происходит вследствие:
а) функциональных изменений элементов и/или подсистем в системе (приспособление животных к новым условиям среды обитания)
б) структурного изменения (модификационные превращения в неорганических системах: например переход алмаза в графит).
4. Преобразование системы в качественно иное, но высшее по степени организованности состояние. Оно происходит как в рамках одной формы движения, так и при переходе от одной формы к другой. Этот тип преобразования связан с прогрессивным, поступательным развитием системы.
Итак, преобразование - неизбежный этап в развитии системы. Она вступает в него в силу нарастающих противоречий между новым и старым, между изменяющимися функциями элементов и характером связи между ними, между противоположными элементами. Преобразование может отражать как завершающий конечный этап в развитии системы, так и переход систем-стадий друг в друга. Преобразование есть период дезорганизации системы, когда старые связи между элементами рвутся, а новые еще только создаются. Преобразование может означать и реорганизацию системы, а также превращение системы как целого в элемент другой, высшей системы.
Мир в свете системных представлений
Сегодня специальные науки убедительно доказывают системность познаваемых ими частей мира. Вселенная предстает перед нами как система систем. Конечно понятие “система” подчеркивает отграниченность, конечность и, метафизически мысля, можно прийти к выводу, что поскольку Вселенная это “система”, то она имеет границу, т.е. конечна. Но с диалектической точки зрения как бы ни представлять себе самую большую из систем, она всегда будет элементом другой, более обширной системы. Это справедливо и в обратном направлении, т.е. Вселенная бесконечна не только “вширь”, но и “вглубь”.
До сих пор все имеющиеся в распоряжении науки факты свидетельствуют о системной организации материи.
Системность неорганической природы
Согласно современным физическим представлениям, неорганическая природа в общем виде делится на две системы - поле и вещество. Материальная сущность физического поля в настоящее время еще четко не определена, но что бы из себя не представляло поле, общепризнанно, что оно проявляется в различных сосуществующих, взаимодействующих и взаимопроникающих видах. Физическое поле, как обобщающее понятие, включает в себя физический “вакуум”, электронно-позитронное, мезонное, ядерное, электромагнитное, гравитационное и другие поля. Иначе говоря, представляет собой систему конкретных материальных полей.
Каждое конкретное поле в свою очередь тоже системно. Но сейчас нельзя с уверенностью сказать о том, что является элементом конкретного поля. Очевидно, каждое конкретное поле имеет свои определенные уровни, иначе говоря, оно как система развивается , например, от “вакуума” до четко выраженного квантового состояния. Сам же квант поля представляет собой элементарную частицу. Поэтому квант вряд ли может быть элементом конкретного поля. Скорее всего такими элементами являются узловые “точки” структуры элементарных частиц [2]. Существуют ясные экспериментальные доказательства существования такой структуры и масса различных способов ее изучения [10]. Но что представляет собой структура элементарной частицы, а тем более ее узловые “точки” остается пока неясным.
Если допустить мысль о частице как высшей форме развития материи поля, то естественно предположить существование определенных “кирпичиков” которые образуют такую частицу, и являются тем, из чего состоит физическое поле вообще, т.е. элементами системы физического поля. Их взаимодействие (полевая форма движения) и приводит к образованию элементарной частицы того или иного типа.
Такая идея о сложности элементарных частиц, о том, что каждая из них это система, состоящая из различного количества разнообразно взаимодействующих и по разному пространственно расположенных элементарных частиц, но тождественных по своей сущности “кирпичиков” материи, позволяет объяснить взаимопревращаемость частиц и открывает путь к проникновению вглубь материи. Элементарная частица - это не только квант поля, но и то, что может лежать в основе качественно иной системы - вещества.
Вещество - чрезвычайно сложная, глубоко дифференцированная многоуровневая система. Если элементарная частица выступает и как элемент качественно иной, вещественной системы, то две и более взаимодействующие элементарные частицы представляют собой систему, которая может быть названа частичкой вещества [2].
Так, взаимодействие протона и электрона образует простейший атом легкого водорода, внутренне динамическую систему, элементы которой подчинены целому ряду параметров, и вследствие этого отличающиеся от свободных частиц. Атом как система развивается усложняясь по составу и структуре вплоть до такого состояния, когда начинается самопроизвольный распад атомного ядра.
Взаимодействующие атомы образуют различные системы: молекулы, макромолекулы, ионы радикалы, кристаллы.
Молекула представляет собой материальную систему, состоящую из определенным образом расположенных в пространстве и взаимосвязанных атомов одного или нескольких химических элементов. Связь атомов в молекуле прочнее связи атомов со средой, что обеспечивает целостность системы. Молекула является качественно новым материальным образованием по отношению к составляющим ее атомам. Молекулы могут быть простыми и сложными, содержащими один, два и тысячи атомов. Гигантские группы атомов образуют макромолекулы, качественно отличающиеся от других молекул. [2]
Однако не все вещества состоят из систем типа молекул. Ряд химических соединений, например хлорид натрия (поваренная соль), не имеют молекул в обычном понимании этого слова, и являются открытыми системами в которых ионы относительно независимы друг от друга. Такой тип вещественной системы называют кристаллом. Ионами называют как отдельные заряженные атомы, так и группы химически связанных атомов с избытком или недостатком электронов. Группа атомов, переходящая без изменения из одного химического соединения в другое, определяется как радикал. Все эти группы являются системами.
Взаимодействие атомов одного типа образует химический элемент. Из химических элементов слагаются минералы, из минералов - породы, из пород - геологические формации, из геологических формаций - ряды формаций - геосферы, из геосфер - планета Земля [11]. Каждая система, слагающая Землю, в свою очередь сложена по своей структуре. Так, например, атмосфера представляет собой систему, состоящую из пяти подсистем: тропосфера, стратосфера, мезосфера, термосфера и экзосфера.
Земля, как планета, выступает наряду с другими планетами элементом Солнечной системы. В свою очередь, Солнечная система входит в такую грандиозную космическую систему как Галактика. Взаимодействующие галактики образуют системы галактик, входящие в Метагалактику и т.д. При этом на каждом уровне развития неживой природы, наряду с общими, имеются и свои системообразующие факторы, свои особые связи и взаимодействия. Вместе с тем, принцип организации множества в единство остается одним и тем же. Не меняется он и при переходе к системам живой природы [2].
Название: Системный подход как метод познания мира
Дата: 2007-06-05
Просмотрено 19247 раз