Реклама





Книги по философии

Дэвид Дойч
Структура реальности

(страница 54)

Допустим, что мы намеренно модифицируем программу, передающую геометрию Евклида, так, что генератор виртуальной реальности по-прежнему будет передавать круги достаточно хорошо, но менее, чем совершенно. Разве мы не смогли бы сделать какой-либо вывод о совершенных кругах, ощущая эту несовершенную передачу? Это полностью зависело бы от того, знали бы мы, в каких отношениях была изменена программа или нет. Если бы мы это знали, мы могли бы с определенностью решить (за исключением грубых ошибок и т.д.), какие аспекты ощущений, полученных нами внутри машины, представляли совершенные круги точно, а какие неточно. И в этом случае знание, которое мы приобрели там, было бы так же надежно, как и любое знание, которое мы приобрели бы, используя правильную программу.

Представляя круги, мы осуществляем передачу в виртуальной реальности почти такого же рода в своем мозге. Причина того, почему этот способ мышления о кругах не бесполезен, состоит в том, что мы можем создать точные теории о том, какими свойствами совершенных кругов обладают воображаемые нами круги, а какими нет.

Используя совершенную передачу в виртуальной реальности, мы могли бы получить впечатление о шести идентичных кругах, которые касаются кромки седьмого идентичного им круга в плоскости, не перекрывая друг друга. Это впечатление при подобных обстоятельствах было бы эквивалентно точному доказательству возможности такой ситуации, потому что геометрические свойства переданных форм были бы абсолютно идентичны геометрическим свойствам абстрактных форм. Но такой вид "практического" взаимодействия с совершенными формами не способен дать всестороннее знание геометрии Евклида. Большая часть интересных теорем относится не к одной геометрической форме, а к бесконечным классам геометрических форм. Например, сумма углов любого треугольника Евклида равна 180°. Мы можем измерить отдельные треугольники с совершенной точностью в виртуальной реальности, но даже в виртуальной реальности мы не можем измерить все треугольники, и поэтому мы не можем проверить теорему.

Как же мы можем ее проверить? Мы доказываем ее. Традиционно доказательство определяют как последовательность утверждений, удовлетворяющих самоочевидным правилам вывода, но чему физически эквивалентен процесс доказательства? Чтобы доказать утверждение о бесконечно большом количестве треугольников сразу, мы исследуем определенные физические объекты (в данном случае символы), которые обладают общими свойствами с целым классом треугольников. Например, когда при надлежащих обстоятельствах мы наблюдаем символы "rАВС=rDEF" (т. е. "треугольник АВС конгруэнтен треугольнику DEF"), мы делаем вывод, что все треугольники из какого-то определенного конкретным образом класса всегда имеют ту же самую форму, что и соответствующие им треугольники из другого класса, определенного иначе. "Надлежащие обстоятельства", которые придают этому выводу статус доказательства, заключаются, говоря языком физики, в том, что символы появляются на странице под другими символами (некоторые из которых представляют аксиомы геометрии Евклида), и порядок появления символов соответствует определенным правилам, а именно, правилам вывода.

Но какими правилами вывода нам следует пользоваться? Это все равно, что спросить, как следует запрограммировать генератор виртуальной реальности для передачи мира геометрии Евклида. Ответ в том, что нужно использовать те правила вывода, которые, для нашего лучшего понимания, заставят наши символы вести себя в уместной степени как абстрактные категории, которые они обозначают. Как мы можем быть уверены, что они будут вести себя именно так? А мы и не можем быть уверены в этом. Предположим, что некоторые критики возражают против наших правил вывода, потому что они считают, что наши символы будут вести себя отлично от абстрактных категорий. Мы не можем ни взывать к авторитету Аристотеля или Платона, ни доказать, что наши правила вывода безошибочны (за исключением теоремы Геделя, это привело бы к бесконечному регрессу, ибо сначала нам пришлось бы доказать обоснованность самого метода доказательства, используемого нами). Не можем мы и надменно сказать критикам, что у них что-то не в порядке с интуицией, потому что наша интуиция говорит, что символы будут копировать абстрактные категории в совершенстве. Все, что мы можем сделать, -- это объяснить. Мы должны объяснить, почему мы думаем, что при определенных обстоятельствах символы будут вести себя желаемым образом в соответствии с высказанными нами правилами. А критики могут объяснить, почему они предпочитают теорию, конкурирующую с нашей. Расхождение во мнениях относительно двух таких теорий -- это частично расхождение во мнениях относительно наблюдаемого поведения физических объектов. Такого рода расхождения могут быть адресованы нормальными методами науки. Иногда они легко разрешимы, а иногда -- нет. Другой причиной подобного расхождения может стать концептуальный конфликт, связанный с природой самих абстрактных категорий. И вновь дело за конкурирующими объяснениями, на этот раз объяснениями не физических объектов, а абстрактных категорий. Либо мы придем к общему пониманию со своими критиками, либо согласимся, что говорим о двух различных абстрактных объектах, либо вообще не придем к согласию. Нет никаких гарантий. Таким образом, в противоположность традиционному убеждению, споры в математике не всегда можно разрешить с помощью исключительно методологических средств.

На первый взгляд, характер традиционного символического доказательства кажется весьма отличным от характера "практического" виртуального доказательства. Но теперь мы видим, что они относятся друг к другу так же, как вычисления относятся к физическим экспериментам. Любой физический эксперимент можно рассматривать как вычисление, и любое вычисление -- как физический эксперимент. В обоих видах доказательства физическими категориями (независимо от того, находятся они в виртуальной реальности или нет) манипулируют в соответствии с правилами. В обоих видах доказательства физические категории представляют интересующие нас абстрактные категории. И в обоих случаях надежность доказательства зависит от истинности теории о том, что физические и абстрактные категории действительно имеют соответствующие свойства.

Из вышеизложенного рассуждения также можно увидеть, что доказательство -- это физический процесс. В действительности, доказательство -- это разновидность вычисления. "Доказать" высказывание значит осуществить вычисление, которое, будучи выполненным правильно, устанавливает истинность высказывания. Используя слово "доказательство" для обозначения объекта, например, текста, написанного чернилами на бумаге, мы имеем в виду, что этот объект можно использовать в качестве программы для воссоздания вычисления соответствующего вида.

Следовательно, ни математические теоремы, ни процесс математического доказательства, ни впечатление о математической интуиции не подтверждает никакую определенность. Ничто не подтверждает ее. Наше математическое знание, так же как и наше научное знание, может быть глубоким и широким, может быть неуловимым и удивительно объяснительным, может быть принятым без разногласий; но оно не может быть определенным. Никто не может гарантировать, что в доказательстве, которое ранее считалось обоснованным, однажды не обнаружат глубокое недоразумение, казавшееся естественным из-за ранее несомненного "самоочевидного" допущения о физическом мире, или об абстрактном мире, или об отношении некоторых физических и абстрактных категорий.

Именно такое ошибочное, самоочевидное допущение привело к тому, что саму геометрию ошибочно классифицировали как раздел математики в течение двух тысячелетий, приблизительно с 300 года до н.э., когда Евклид написал свой труд "Элементы", до девятнадцатого века (а в некоторых словарях и школьных учебниках до сегодняшнего дня). Геометрия Евклида сформировала часть интуиции любого математика. В конечном счете, некоторые математики начали сомневаться в самоочевидности, в частности, одной из аксиом Евклида (так называемой "аксиомы о параллельных"). Сначала они не сомневались в истинности этой аксиомы. Говорят, что великий немецкий математик Карл Фридрих Гаусс был первым, кто подверг ее проверке. Аксиома о параллельных необходима при доказательстве того, что сумма углов треугольника составляет 180°. Легенда гласит, что в совершенной секретности (из-за боязни быть осмеянным) Гаусс разместил своих ассистентов с фонарями и теодолитами на вершинах трех холмов, чтобы вблизи измерить вершины самого большого треугольника. Он не обнаружил никаких отклонений от предсказаний Евклида, однако теперь мы знаем, что это произошло потому, что его инструменты не обладали достаточной чувствительностью. (С геометрической точки зрения окрестность Земли оказывается довольно пассивным местом). Общая теория относительности Эйнштейна включала новую теорию геометрии, которая противоречила геометрии Евклида и была доказана экспериментально. Сумма углов реального треугольника в действительности не обязательно составляет 180°: истинная сумма зависит от гравитационного поля внутри этого треугольника.

Весьма похожая ошибочная классификация была вызвана фундаментальной ошибкой относительно самой природы математики, которую математики допускали с античных времен, а именно, что математическое знание более определенно, чем какая-либо другая форма знания. Такая ошибка не оставляет выбора классификации теории доказательства, кроме как части математики, поскольку математическая теорема не может быть определенной, если теория, подтверждающая метод ее доказательства, сама по себе неопределенна. Но как мы только что видели, теория доказательства не является разделом математики -- она является наукой. Доказательства не абстрактны. Не существует абстрактного доказательство чего-либо, так же, как не существует абстрактного вычисления чего-либо. Конечно, можно определить класс абстрактных категорий и назвать их "доказательствами", но эти "доказательства" не могут подтвердить математические утверждения, потому что их невозможно увидеть. Они могут убедить кого-либо в истинности высказывания не более, чем абстрактный генератор виртуальной реальности, который физически не существует, может убедить людей, что они находятся в другой среде, или абстрактный компьютер может разложить на множители число. Математическая "теория доказательств" не имела бы никакого отношения к тому, какие математические истины можно или нельзя доказать в действительности, точно так же, как теория абстрактного "вычисления" не имеет никакого отношения к тому, что математики -- или кто-то еще -- могут или не могут вычислить в реальности, по крайней мере, если не существует отдельной эмпирической причины считать, что абстрактные "вычисления" в этой теории похожи на реальные вычисления. Вычисления, включая и особые вычисления, квалифицируемые как доказательства, -- это физические процессы. Теория доказательств говорит о том, как обеспечить, чтобы эти процессы правильно имитировали абстрактные категории, которые они должны имитировать.

Название книги: Структура реальности
Автор: Дэвид Дойч
Просмотрено 141842 раз

......
...444546474849505152535455565758596061626364...