Реклама





Книги по философии

Герберт Спенсер
Опыты научные, политические и философские. Том 2

(страница 35)

Перейдем теперь к явлению термоэлектричества. Предположим, что две металлические массы нагреты на поверхностях соприкосновения, причем форма их такова, что поверхности соприкосновения можно нагреть сильно, в то время как более отдаленные части не нагреются заметно. Что выйдет? Тиндаль показал на различных газах и жидкостях, что если, при равенстве остальных условий, частицы сообщают телам большее количество того нечувствительного движения, которое мы называем теплом, то периоды колебаний не изменяются, а только возрастает амплитуда колебаний, частицы совершают больший путь в те же самые промежутки времени. Допустим, что это имеет место и для твердых тел; тогда окажется, что при нагревании двух металлов на поверхностях соприкосновения получится такой же результат, как и прежде, относительно свойств и промежутков сложных, дифференциальных волн; перемена, однако, произойдет в направлении этих волн: два рода частиц, каждый порознь, приобретают ускоренное движение, через это и их взаимные пертурбации также возрастут. Усиленные положительные и отрицательные волны дифференциального движения, как и прежде, будут проходить через каждое тело по направлению от поверхностей соприкосновения, т. е. к холодным краям тел. От холодных краев они по-прежнему, будут стремиться к взаимному уравновешиванию. Но они встретят сопротивление на обратном пути. Доказано, что с повышением температуры уменьшается проводимость металла для электричества. Итак, если холодные края двух масс соединить посредством третьей массы, частицы которой могут свободно передавать эти дифференциальные колебания, т е. если эти края соединить проводником, то положительные и отрицательные волны будут встречаться и взаимно уничтожаться на проводнике, вместо того чтобы отражаться обратно к поверхностям соприкосновения. Другими словами, установится ток на проволоке, соединяющей холодные края наших металлических тел. Для дальнейшего рассуждения нам необходимо объяснить, что такое термоэлектрический столбик. Если спаять концами ряд пластинок из различных металлов, например сурьмы и висмута, в последовательном порядке: АВ, АВ, АВ и т. д., - то, пока они холодны, электрического тока не будет. Если одинаково нагреть все спайки, то также не появится признаков электрического тока, помимо того, который может быть вызван относительно низкой температурой обоих краев сложной пластинки. Но если нагреть спайки через одну, то на проволоке, соединяющей оба края сложной пластинки, появится электрический ток, и довольно сильный, соответственно числу пар. Какая же тут причина? Очевидно, пока спайки сохраняли одинаковую температуру, дифференциальные волны, распространяющиеся от каждой спайки к двум ближайшим, были равны и противоположны тем, которые исходили от ближайших спаек обратно, и поэтому дистурбации не было. Но если нагревать спайки через одну, то положительные и отрицательные волны, исходящие от них, будут сильнее, чем волны, исходящие от других ненагретых спаек. Поэтому, если нагреть спайку пластинки А с пластинкой В, то другой, не нагретый, край пластинки В, спаянный с А, воспримет более сильную дифференциальную волну, чем та, которую он отошлет назад. К волне, которую ее молекулы в противном случае ввели бы в молекулы А2, присоединяется еще эффект, который она несет от А1. Этот особенный импульс, распространяющийся до другого края В2, присоединяется к импульсу, который нагретые молекулы иначе передали бы А3, и т. д. по всему ряду. Сложенные вместе, волны становятся сильнее и ток на проволоке, соединяющей концы ряда, напряженнее. Такое объяснение явлений термоэлектричества вызовет, вероятно, возражение, что иногда бывает термоэлектрический ток между массами однородного металла и даже между отдельными частями одной и той же массы. На это можно сказать, что если различие периодов колебаний в соприкасающихся частицах есть причина электрической дистурбации, то тепло не должно было бы вызывать электрической дистурбации при соприкосновении однородных частиц, так как тепло не изменяет периодов молекулярных колебаний. Это возражение, которое с первого взгляда кажется серьезным, приводит нас к одному выводу. Если массы молекул во всех отношениях однородны, то различие температуры не вызывает термоэлектрического тока. Соединение горячей и холодной ртути не дает электрического возбуждения. Во всех случаях, когда термоэлектричество возбуждается между однородными металлами, несомненно существует разнородность в их молекулярном строении: один был кован, а другой не был, или один был прокален, а другой не был. Если ток появляется между отдельными частями одной и той же массы, то существует разница в кристаллическом состоянии частиц или в способе их охлаждения после отливки или накаливания. Другими словами, это доказывает, что частицы в двух телах или в различных частях одного и того же тела находятся в неодинаковых отношениях к смежным частицам - в неодинаковом состоянии напряжения. Как бы справедливо ни было, что однородные частицы колеблются в одинаковые периоды при всякой температуре, но это справедливо только до тех пор, пока их движения не подвергаются влиянию каких-нибудь сдерживающих сил. Если однородные частицы в одном теле расположены так, как это бывает при кристаллическом состоянии, а в другом они иначе сцеплены между собою или если в одном теле соотношения частиц изменены ковкой, а в другой такого изменения не произведено, то различие препятствий, при которых они колеблются, отразится на времени их колебаний. А раз времена колебаний станут неравными, то указанная причина электрической дистурбации станет оказывать свое действие. Сводя все сказанное выше, нельзя ли, спрашивается, сказать, что явление электричества может быть объяснено только такого рода действием и что такого рода действие должно неминуемо возникнуть при данных условиях? С одной стороны, рассматривая электричество как вид движения, этим самым признают изменение какого-то ранее существовавшего движения, т. е. предполагают такое изменение, которое одновременно дает два новых рода движения, равных и противоположных по направлению, и одно из них положительное, а другое отрицательное; поэтому они могут взаимно уничтожаться. С другой стороны, в вышеупомянутых случаях молекулярное движение есть единственный источник движения, на который можно указать; и это молекулярное движение при известных обстоятельствах как будто рассчитано на то, чтобы производить эффект, подобный рассмотренному нами. Частицы, совершающие колебания в различные времена при взаимодействии, не могут не оказать влияния на движение каждой из них. Они должны влиять взаимно, периодически, то ускоряя, то замедляя движение друг другу а всякий избыток движения, который сообщается одним, вызовет соответствующий недостаток движения в других. Если такие частицы образуют сложные молекулы, приведенные в соприкосновение, то они должны передавать эти пертурбации смежным молекулам. Итак, от поверхности соприкосновения должны исходить волны усиленного и уменьшенного молекулярного движения, равные по величине и противоположные по направлению, волны, которые должны компенсировать друг друга, когда их приведут в соприкосновение. Я говорил здесь только о простейшем виде явлений электричества. Впоследствии я, быть может, попытаюсь показать, как объясняет эта гипотеза другие формы проявления электричества.

Примечание (1873 г.). В течение девяти лет со времени напечатания вышеупомянутого очерка я не брался за подобное объяснение других форм проявления электричества. Хотя время от времени я и возвращался к этому предмету в надежде исполнить обещание, данное мною в заключительных строках, но никакие указания не поощряли меня к развитию моих рассуждений. Теперь же перепечатывание моей статьи в окончательной форме вновь наводит меня на этот вопрос-, у меня является мысль, которую, кажется, стоит изложить. Эта мысль возникла от сопоставления двух различных идей. В первом выпуске Оснований биологии, вышедшем в январе 1863 г., говоря в числе других "данных биологии" об органической материи и о влиянии сил на нее, я пытался рассуждать о частичных действиях, обусловливающих органические изменения, и, между прочим, о том, как свет помогает растениям извлекать углерод из углекислоты (п. 13). Указывая на то, что способность теплоты разлагать сложные молекулы обыкновенно бывает пропорциональна разности между атомными весами их составных элементов, я выводил из этого, что составные элементы, имеющие весьма различные атомные веса, имеют весьма различные движения и поэтому подвержены весьма различным колебаниям, я заключал, что пропорционально различию ритма составных элементов сложная молекула становится неустойчивой при действии на нее эфирных колебаний значительного напряжения, которые влияют на один из ее составных элементов больше, чем на другой или вообще на другие: их движения настолько теряют соответствие, что они уже больше не могут держаться вместе. Далее, я говорил, что довольно устойчивая сложная молекула под влиянием сильных эфирных колебаний, производящих особенно сильное действие на один из ее составных элементов, может быть разложена в присутствии другой, не похожей на первую, молекулы, у которой составные элементы по времени колебания менее отличаются от этого подвергшегося дистурбации элемента. Затем я проводил параллель между раскислением металлов посредством углерода, когда они подвергаются колебаниям длинных периодов в печи, и выделением углерода из углекислоты и других тел при помощи водорода под влиянием колебаний коротких периодов (световых) в листьях растений. Я напоминаю эти идеи главным образом для того, чтобы дать ясное понятие о сложной молекуле, содержащей составные элементы с различным движением, составные элементы, имеющие самостоятельные и неодинаковые колебания, помимо колебания, свойственного всей молекуле. Я думаю, что это понятие можно признать правильным. Прекрасные опыты, посредством которых Тиндаль доказал, что свет разлагает поры некоторых составов, поясняют свойство элементов сложной молекулы воспринимать эфирные колебания, соответствующие свойственным им колебаниям, вследствие чего их индивидуальные движения настолько возрастают, что производят разрыв сложной молекулы. Так, по крайней мере, Тиндаль объясняет этот факт. Я полагаю, что это его объяснение, применимое для фактов, свидетельствующих об удивительном свойстве паров со сложной частицей поглощать тепло, сходно с моим, и именно, что тепловые колебания в таких парах воспринимаются составными частями для возрастания движений внутри каждой молекулы, а не для возрастания движения в целой молекуле. Допустим, что это представление о влиянии эфирных колебаний на сложные молекулы правильно; тогда возникает вопрос, каково же взаимодействие сложных молекул? Как отражается на ритмических движениях составных элементов какой-нибудь сложной молекулы соседство элементов другой, не сходной с нею, а также сложной молекулы? Не можем ли мы предположить, что взаимное влияние производится не только неодинаковыми молекулами, как целыми, но что также в известной мере существует независимое взаимное влияние их составных элементов, и не имеет ли здесь место какая-нибудь особая форма молекулярного движения? В рассуждениях предыдущей статьи в расчет принимаются молекулы соприкасающихся металлов, молекулы, если не безусловно, то, во всяком случае, сравнительно простые; предполагается, что они производят во взаимных движениях сравнительно простые пертурбации, которые могут передаваться в каждой массе от одной молекулы к другой. Стараясь провести дальше это объяснение, я до сих пор еще не рассматривал пертурбаций, производимых взаимодействием сложных молекул, принимая во внимание не только способность каждой молекулы влиять на другую, как на нечто целое, но и способность отдельных составных частиц каждой из них влиять на отдельные составные частицы другой. Если в отдельном составном элементе сложной молекулы, под напором эфирных волн, амплитуда колебаний возрастет настолько, что выделит этот элемент из молекулы, то едва ли подлежит сомнению, что отдельный составной элемент сложной молекулы может повлиять на известную составную часть смежной, неодинаковой с первой сложной молекулы; колебания этих элементов будут влиять друг на друга, помимо общих пертурбаций, производимых сложными молекулами, как целыми. Мы заключаем, что вызванная таким образом вторичная пертурбация, подобно первой, дает равное и противоположное действие и противодействие и равные и противоположные изменения в молекулярных движениях. Из этого можно получить несколько следствий. Если сложная молекула с медленным ритмом в целом и более быстрыми ритмами ее составных частиц обладает свойством сильно воспринимать движение, называемое нами теплом, при ускорении ее внутренних частичных колебаний и, наоборот, меньше воспринимать его при ускорении колебаний всей молекулы, как целой, то не можем ли мы заключить, что подобное же явление произойдет при действии на частицу другого рода сил?

Название книги: Опыты научные, политические и философские. Том 2
Автор: Герберт Спенсер
Просмотрено 132092 раз

......
...252627282930313233343536373839404142434445...