Реклама
Рефераты по философии
Законы науки, способы их открытия и обоснования
(страница 13)
И с теоретической и с практической точек зрения индуктивная модель объяснения играет существенную роль в науке. Часто она может значительно облегчить поиски более привычного дедуктивного объяснения, но во многих случаях сама проблема не допускает такого объяснения, и поэтому приходится обращаться к индукции и статистике.
В заключение остановимся на выяснении логической связи между дедуктивным и индуктивным объяснением. Поскольку индуктивный вывод допускает более ослабленные требования, чем дедуктивный, то целесообразно рассматривать индукцию как более общий тип рассуждения. Соответственно такому подходу мы будем выражать статистические законы в форме обобщенной, вероятностной импликации, впервые введенной Г. Рейхенбахом, а обычные универсальные законы динамического типа - в виде общей импликации математической логики.
В статистическом законе, как и любом вероятностном утверждении, можно выделить две части: в первой из них — антецеденте - формулируются условия, при осуществлении которых с той или иной вероятностью может произойти интересующее нас событие случайного массового характера, т.е. консеквент импликации. Так как при статистической интерпретации речь идет не об индивидуальных событиях, а о классе подобных событий, то в вероятностной импликации мы должны рассматривать не отдельные высказывания, а классы высказываний, которые можно выразить с помощью пропозициональных функций, или функций-высказываний. Тогда саму вероятностную импликацию символически можно представить в следующем виде:
Универсальный квантор (i) перед импликацией показывает, что она распространяется на все случаи из некоторого класса событий. Антецедент хi, А обозначает класс тех событий А, при осуществлении которых с вероятностью равной р возникает событие у из класса В:
Уi В. Так, например, если рассматривать явления, связанные с радиоактивным распадом химических элементов (события класса А), то каждому элементу будет соответствовать определенная вероятность его превращения в другие элементы в течение некоторого времени, которую обычно характеризуют как период полураспада.
Существенное отличие вероятностной импликации от обычной состоит в том, что если в последнем случае истинность антецедента всегда влечет и истинность консеквента, то в первом случае истинный антецедент обеспечивает лишь определенную вероятность консеквента. Если степень вероятности р будет равна 1, тогда вероятностная импликация превращается в обычную. Мы видим отсюда, что дедуктивное объяснение можно рассматривать как особый случай индуктивного, когда степень вероятности экспланандума становится равной 1 и, следовательно, вероятный вывод становится достоверным.
Индуктивные объяснения, степень вероятности которых приближается к так называемой практической достоверности, т.е. весьма близка к 1, хотя по своему результату сходны с дедуктивными, тем не менее составляют особый вид, и поэтому Гемпель совершенно правильно относит их именно к индуктивным. Дело в том, что, несмотря на большую степень вероятности, их заключение в принципе может оказаться и неверным, так что здесь всегда имеется элемент неопределенности. Эта неопределенность будет возрастать по мере уменьшения величины вероятности. Поэтому индуктивные объяснения, степень вероятности заключения которых не превышает половины, на практике не будут считаться подлинными объяснениями.
8.3 Научное предсказание
Предвидение новых ситуаций, событий и явлений составляет важнейшую особенность человеческого познания и целенаправленной деятельности вообще. В элементарной форме эта особенность присуща и высшим животным, поведение которых строится на основе условных рефлексов. Однако о подлинном предвидении можно говорить лишь тогда, когда оно основывается на сознательном применении тех или иных закономерностей, выявленных в процессе развития науки и общественной практики.
Научные предсказания, опирающиеся на точно сформулированные законы и теории, генетически возникают из предвидений и эмпирических прогнозов, которые задолго до возникновения науки люди делали на основе простейшего обобщения своих наблюдений над явлениями природы. Такие прогнозы не отличались большой точностью, поскольку они строились на наблюдениях тех связей явлений, которые легче всего бросались в глаза. Но уже здесь люди интуитивно сознавали закономерную связь между явлениями и их различными свойствами. Так, предсказание погоды по форме облаков, характеру заката, движению ветра, температуре воздуха и другим приметам часто приводит опытных людей к правильным выводам. Однако такой прогноз в значительной мере основывается на знании не объективных законов природы, а скорее различных внешних проявлений этих закономерностей. Даже классическая метеорология свои прогнозы строит большей частью на основе эмпирического исследования распределения давлений воздуха, формы облаков, скорости движения ветра и некоторых других факторов. Естественно поэтому, что такие прогнозы могут делаться только на сравнительно короткое время, да и то не всегда сбываются. Причина этого состоит в том, что они не опираются на глубокие внутренние закономерности и теории, управляющие процессами формирования погоды в различных регионах земного шара. Поэтому современная теоретическая метеорология стремится открыть как раз именно такие законы, с помощью которых можно было составлять долгосрочные прогнозы. Этот пример достаточно ясно показывает, что надежность, точность и временные границы предсказания самым тесным образом зависят от характера законов или обобщений, используемых в процессе предсказания.
Как и при объяснении, так и при предсказании наиболее надежными являются заключения, опирающиеся на универсальные законы динамического типа. Такими являются, например, предсказания результатов движения различных небесных тел в астрономии и многие другие предсказания в так называемых точных науках. Но и здесь часто приходится прибегать к вероятностно-статистическим, или стохастическим предсказаниям (квантовая механика, теория «элементарных частиц», космология и др.). В биологии же и социальных науках удельный вес стохастических предсказаний неизмеримо выше.
Органическая связь между объяснением и предсказанием выражается, не только в характере использования законов, но прежде всего в том, что объяснение служит основой для предвидения. Действительно, если мы можем объяснить сущность или причину возникновения того или иного явления, то мы всегда можем предсказать его появление. Как мы уже видели, Леверье и Адаме, объяснив иррегулярности в движении планеты Уран, предсказали существование новой, до этого неизвестной планеты Нептун. Д. И. Менделеев, открыв свой знаменитый периодический закон, смог объяснить химические свойства элементов. Опираясь на это, он предсказал существование новых химических элементов и приблизительно верно описал их свойства. Число подобных примеров можно было увеличить, Все они свидетельствуют о том, что подлинно научное объяснение обладает потенциальной предсказывающей силой. Этот вывод получил аргументированное обоснование в известной статье К. Гемпеля и П. Оппенгейма «Логика объяснения», где они подчеркивают, что в той мере, в какой мы в состоянии объяснить эмпирические факты, мы можем достичь высшей цели научного исследования, а именно - не просто регистрировать явления нашего опыта, но познать, опираясь на них, теоретические обобщения, дающие нам возможность предвидеть новые события.
Наконец, неразрывная связь между объяснением и предсказанием находит свое выражение в одинаковой логической структуре процессов объяснения и предсказания. При рассмотрении дедуктивной модели научного объяснения в качестве иллюстрации был приведен пример с объяснением иррегулярностей в движении планеты Уран. Результатом этого объяснения было предсказание существования новой планеты. Этот вывод логически следовал из соответствующих посылок, т.е. универсальных законов механики и закона всемирного тяготения, а также специфических характеристик, относящихся к параметрам движения планет и эмпирически установленным иррегулярностям в движении Урана. В других случаях объяснение, как правило, относится к уже известным явлениям и событиям. Все это не сказывается на логической структуре. Поэтому мы можем рассматривать дедуктивную модель предсказания как дедуктивный вывод, посылками которого служат, с одной стороны, универсальные законы динамического типа, а с другой — некоторые конкретные условия, характеризующие связь между общими и единичными утверждениями. По аналогии с объяснением все эти посылки можно было бы назвать проектансом, т.е. утверждениями, на которых базируется предсказание. Само же заключение будет тогда проектандумом. Аналогичные замечания можно сделать относительно стохастических предсказаний, которые основываются на статистических законах и обобщениях и заключение которых имеет индуктивный (вероятностный) характер.
Название: Законы науки, способы их открытия и обоснования
Дата: 2007-06-09
Просмотрено 55238 раз